COMMUNICABLE DISEASE CENTER

SALMONELLA

 SURVEILLANCE

 SURVEILLANCE}

TABLE OF CONTENTS
For the month of October 1966
I. SUMMARY
II. REPORTS OF ISOLATIONS FROM THE STATES
III. CURRENT INVESTIGATIONS
IV. REPORTS FROM STATES
V. SPECIAL REPORTS
VI. INTERNATIONAL
VII. FOOD AND FEED SURVEILLANCE
U. S. Department of Health, Education, and Welfare/public Health Service

PREFACE

Summarized in this report is information received from State and City Health Departments, university and hospital laboratories, the National Animal Disease Laboratory (USDA, ARS), Ames, lowa, and other pertinent sources, domestic and foreign. Much of the information is preliminary. It is intended primarily for the use of those with responsibility for disease control activities. Anyone desiring to quote this report should contact the original investigator for confirmation and interpretation.

Contributions to the Surveillance Report are most welcome. Please address to:
Communicable Disease Center, Atlanta, Georgia 30333, Attention: Chief, Salmonella Unit.

Communicable Disease Center	David J. Sencer, M.D., Chief
Epidemiology Branch	Alexander D. Langmuir, M.D., Chief
Bacterial Diseases Section	Theodore C. Eickhoff, M.D., Chief
Salmonella Unit	John R. Boring, Ph.D., Assistant Chief
	Albert R. Martin, M.D., Chief Michael D. Treger, D. V.M. Steven A. Schroeder, M.D. L. Ariel Thomson, D.D.S.
Statistics Section	Stanley M. Martin Richard C. Arnold
Veterinary Public Health Section	James H. Steele, D.V.M., Chief
Veterinary Public Health Laboratory	Mildred M. Galton, M.Sc., Chief

Collaborators

Laboratory Branch
Bacteriology Section
Enteric Bacteriology Unit

William H. Ewing, Ph.D., Chief

TABLE OF CONTENTS

Page
I. SUMMARY 1
II. REPORTS OF ISOLATIONS FROM THE STATES 1
A. Human 1
B. Nonhuman 1
III. CURRENT INVESTIGATIONS 2
A. Progress Report - Interstate Outbreak of 2Salmonellosis Related to Nonfat Dry MilkB. Progress Report - Salmonella cubana3Infections Associated with Carmine Dye
IV. REPORTS FROM THE STATES 4
A. New York - Hospital Outbreak of Salmonella 4typhi-murium
B. Massachusetts - Hospital Outbreak of 5
Salmone1la blockley
C. Idaho - Outbreak of Salmonella typhi- 5 murium Due to Contaminated Raw Milk
V. SPECIAL REPORTS 6
NONE
VI. INTERNATIONAL 6
A. Australia - Report of Isolations of 6 Salmonellae from Human and Nonhuman Sources in Australia, Second and Third Quarters 1966
B. Netherlands - Reports of Isolations of 6 Salmonellae, First and Second Quarters 1966
VII. FOOD AND FEED SURVEILLANCE 7
A. Progress Report on Food Surveillance 7
B. Summary of Food and Drug Cultures by 8the U.S. Food and Drug Administration
C. Supplement - List of Organizations Concerned 9with Salmonellae in Foods or Feeds -International

I. SUMMARY

This issue of the Salmonella Surveillance Report includes progress reports on salmonella contamination of powdered milk and carmine dye and discussions of outbreaks in three states. In addition, summaries of salmonella isolations from Australia for the second and third quarters 1966 and for the Netherlands for the first and second quarters 1966 are included.

In October 1966, 1,721 isolations of salmonellae were reported from humans, an average of 430 isolations per week. This number represents a decrease of 26 (5.7 percent) from the weekly average of September 1966 and a decrease of 48 (10.0 percent) from the weekly average of October 1965. The cumulative number of isolations reported for the first ten months of $1966(16,460)$ represents a decrease of 5.9 percent from the total number of isolations reported during this same period in 1965 (17,495).

Reports of 713 nonhuman isolations of salmonellae were received during October, an increase of 167 (30.6 percent) over September 1966.

II. REPORTS OF ISOLATIONS FROM THE STATES

A. Human

The seven most frequently reported serotypes during October were:

Rank
1 S. typhi-murium and S. typhi-murium var. copenhagen
S. heidelberg
S. newport
S. enteritidis
S. infantis
S. typhi
S. saint-paul

Total

Total (all serotypes)

Number Percent
525
30.5
8.1

2
7.5
6.0
5.3
4.1
3.3
$1,115 \quad 64.8$
1,115

1,721

The age and sex distribution (Table III) was similar to that of previous months.
B. Nonhuman

Thirty-seven states reported nonhuman isolations, represented by 58 different serotypes.

The seven most frequently reported serotypes during October were:

Rank	Serotype	Predominant Source and Number	Number	Percent	Rank Last Month
1	S. heidelberg	Turkeys (95) and	113	15.8	2
2	S. typhi-murium and S. typhi-murium var. copenhagen	Chickens (14) Chickens (17) and Bovine (15)	60	8.4	1
3	S. montevideo	Frozen eggs (23) and Chickens (11)	53	7.4	6
4	S. infantis	Chickens (17) and Porcine (11)	49	6.9	4
5	S. thompson	Chickens (16)	28	3.9	Not Listed
6	S. schwarzengrund	Turkeys (19)	27	3.8	Not Listed
7	S. saint-paul	Chickens (18)	26	3.6	5
	Total		356	49.8	
	Total (all serotypes)		713		

The most prominent nonhuman sources of salmonellae reported during October were turkeys, 218 (30.6 percent); chickens, 128 (18.0 percent); livestock feed, 47 (6.6 percent) ; frozen eggs, 44 (6.2 percent) ; porcine, 41 (5.8 percent); animal feed, 33 (4.6 percent); and bovine, 20 (2.8 percent). Salmonella heidelberg was the most prevalent serotype this month because of 66 reported isolations from turkeys in Minnesota.

III. CURRENT INVESTIGATIONS

A. Progress Report - Interstate Outbreak of Salmonellosis Related to Nonfat Dry Milk
Compiled by the Salmonella Unit from data received from the U.S. Department of Agriculture and the U.S. Food and Drug Administration.

Previous issues of the Salmonella Surveillance Report (Nos. 47, 49, 51, 53) have contained information concerning contamination of nonfat dry milk with multiple salmonella serotypes. During that time several dry milk products were recalled from the market because of salmonella contamination. During the month of November, Borden's Starlac and Kroger's instant nonfat dry milk were also recalled. The contaminating serotypes of the Borden product were Salmonella binza and $\underline{\text { S }}$. worthington, while \underline{S}. cubana was found in the Kroger product.

The Dairy Division, Consumer and Marketing Service, U.S. Department of Agriculture, has continued its salmonella testing of milk-drying plants. In September and October 1966, 1,618 samples from 44 plants were tested for salmonellae. The results showed 2 positive samples of nonfat dry milk and 17 positive environmental samples. The following table summarizes results of positive samples obtained over the past 8 months and not previously reported in the Salmonella Surveillance Report.

Serotype
S. oranienburg
S. heidelberg
S. heidelberg
S. montevideo
S. tennessee
S. montevideo
S. senftenberg
S. tennessee
S. heidelberg
S. orion
S. montevideo

Samples and Source
1 plant environment
1 plant environment
1 NDM
2 NDM
1 NDM
9 NDM
1 NDM
1 environment
1 NDM
1 environment
4 NDM

State

Iowa

Iowa
Iowa
Iowa
Idaho
Minnesota
Minnesota
Minnesota
South Dakota
Wisconsin
Wisconsin
B. Progress Report - Salmonella cubana Infections Associated with Carmine Dye
Compiled by the Salmonella Unit from data received from the Ohio State Department of Health and the U.S. Food and Drug Administration.

Three new cases of hospital-acquired Salmonella cubana infections due to ingestion of carmine dye as a diagnostic material have been reported by Dr. Ralph A. Masterson of the Ohio State Department of Health. The patients were all infants hospitalized at a pediatric center, and all developed symptoms within a week after consuming capsules of the dye. One infant received four capsules, one received three, and the last received only one capsule.

Though contamination of carmine dye with \underline{S}. cubana was initially discovered through use of the dye as a clinical diagnostic aid, the vast majority of carmine manufactured in this country is used to color foods, cosmetics, and drugs. Extensive sampling of products containing carmine dye has been undertaken by the U.S. Food and Drug Administration, many State health laboratories, and the Communicable Disease Center. To date, several products have been found to contain \underline{S}. cubana.

Food Products Containing Carmine Dye and Contaminated with Salmonella cubana

Product

Carmine stock solution Pink summer coating
Rainbow peach coating
Rainbow yellow coating
Kiddy Pops
Raspberry Creams
Candy
Remembrance Chocolates
Chocolates and Pastels
Party Wafers
Master Chocolates
Candy Mints
Hostens Thin Mints
Paprika Mix
Meat Binder
Meat Preservative

Peppermint Ice

Manufacturer

J. O. Welch Company

Merckens Company
Merckens Company
Merckens Company
Fanny Farmer
Fanny Farmer
Helen Grace Company
Miss Saylor's
Miss Saylor's
Miss Saylor's
Miss Saylor's
Saunders Candy Company
Hooper's Confections, Inc.
(One lot only - being
recalled by California firm)
(Being recalled within state by Illinois firm)
(Being recalled within state by Illinois firm)
(Being recalled within state
by California firm)

The source of contamination for all the candies can be traced to a stock coloring material containing carmine. No contamination of drugs or cosmetics has yet been reported. All the contaminated products, as well as the dye itself, have been recalled from the market. Examination of carmine-containing products will continue, and findings will be reported in future issues of the Salmonella Surveillance Report. Numerous food samples containing red coloring material have recently been examined by the Veterinary Public Health Laboratory of the Communicable Disease Center. The results are listed in the Food and Feed Surveillance Section of this report.

Editor's Comment: Human illness has not been traced to carmine other than that used in hospitals for diagnostic tests. This is not surprising in light of the large number of food, drug, and cosmetic products which are colored red. Only a small portion of these contain carmine. It is hoped that an association between human illness and carmine-containing products will be sought and reported to the Salmonella Unit, CDC.

IV. REPORTS FROM THE STATES

A. New York

Hospital Outbreak of Salmonella typhi-murium
Reported by Matthew A. Vassallo, M.D., County Health Commissioner, New York.

An outbreak of febrile gastroenteritis, involving over 1,000 patients and employees, occurred at a mental hospital in New York this summer. Typical symptoms included fever from 102° to 104°, nausea, vomiting, cramps, and diarrhea. Severity of illness varied considerably. Four deaths were attributed to the outbreak. Stool cultures from many of the patients were positive for \underline{S}. typhi-murium. The cases began on July 20, 1966, peaked the following day, and then continued to occur sporadically for the next 2 weeks. Over 90 percent of the cases occurred during the first 3 days of the outbreak.

Health authorities learned that all the persons who became ill had eaten in the dining room served by one kitchen. This kitchen was the largest in the hospital, and the attack rate for those who ate in the dining room was estimated at 33 percent. The investigators reasoned that the infecting vehicle must have been food consumed July 18 or 19. Accordingly, bacteriological examination was performed on samples of foods served on these days, as well as numerous environmental samples from the kitchen. All the samples tested were negative except one. A sample of powdered milk taken from an opened bag was positive for \underline{S}. typhi-murium. Other bags of the same lot were tested but did not contain salmonellae. Powdered milk had been used extensively in many of the foods prepared in the kitchen, and the investigators felt that it was a likely cause of the outbreak.

Editor's Comment: While a contaminated food item such as powdered milk seems a possible cause for such an extensive and explosive outbreak, particularly if handled in such a way as to promote bacterial multiplication, it is impossible to definitely incriminate any vehicle on the basis of one positive culture and in the absence of food histories.

Hospital Outbreak of Salmonella blockley
Leonard J. Morse, M.D., Director, Section of Infectious Diseases, Saint Vincent Hospital; G. Foard McGinnes, M.D., Commissioner of Public Health, Worcester, Massachusetts; and A. Daniel Rubenstein, M.D., Commissioner of Hospitals, Commonwealth of Massachusetts Department of Public Health.

Between May 27 and June 16, 1966, 167 cases of infection due to Salmonella blockley were reported at a Massachusetts hospital. The peak incidence occurred during the first 10 days in June. Approximately 40 percent of those infected experienced mild fever and transient symptoms of enteritis. The remainder of the patients were asymptomatic and were identified only as a result of rectal swab cultures taken from all dietary, nursing, and house officer personnel after the outbreak began. During the height of the epidemic, 50 percent of the rectal swab cultures were positive for S. blockley in the nursing and dietary groups. Epidemiologic investigation suggested that ice cream made on May 24 from frozen, unpasteurized egg yolks (5 pounds per 5 gallons) might have been the vehicle of infection. The ice cream was placed in a new hardening machine used for the first time, but after approximately 3 hours it was recognized that the machine was not operating. The ice cream was then placed in the old unit for effective refrigeration. Although samples of egg yolk and ice cream were not available for culture, three 5 -pound cans of unpasteurized, frozen egg yolks were available for laboratory study. Multiple specimens yielded abundant bacterial growth with the predominant organisms being Escherichia coli, Aerobacter, and Proteus species. In one of the cans, $\underline{\text { S }}$. anatum was identified.

The high incidence of infected personnel and the relatively short time period of the outbreak support the hypothesis that a common food was probably responsible. Few cases occurred in hospital employees in the maintenance and research departments; most of these people customarily carry their own lunches and do not patronize the hospital cafeteria. It was felt that the outbreak was due to the use of contaminated frozen, unpasteurized egg yolks which had been allowed to incubate in the nonfunctioning ice cream machine. The measures used to halt this institutional infection were primarily geared toward education and intensified personal hygiene. There were no associated or subsequent cases of $\underline{\text { S }}$ blockley infaction in the community.

C. Idaho

> Outbreak of Salmonella typhi-murium Due to Contaminated Raw Milk Reported by Alvin Holterman, Sanitarian, and John Mather, M.D., Division of Preventive Medicine, Idaho Department of Health.

An outbreak of gastroenteritis due to raw milk contaminated with Salmonella typhimurium and involving 11 persons in 5 families occurred in late January and early February 1966. The farmer responsible for the milk was not in the business of selling raw milk but gave his surplus to relatives and friends. The exact method by which the milk was contaminated is unknown, but several possibilities are apparent. The farmer responsible was busy throughout the winter making trips to a beef cattle feeding lot several miles from his farm. Apparently, 16 calves were in the feed lot and 3 died between January 1 and January 15 from diarrheal disease. Fecal specimens were taken from 6 of the calves 5 weeks after recovery from the illness; 1 was positive for \underline{S}. typhi-murium. The farmer admitted that he often worked late in the evening with the calves while they were ill, and after returning home, had neglected to wash his hands prior to milking. The milk was collected in open buckets and then poured into large wide-mouthed jars. In addition to the possible contamination of the milk from the farmer's hands, manure and other barnyard materials could have easily fallen into the bucket during the milking process. The milk was
cooled very slowly after the collection. It took more than 2 hours to bring the milk temperature down to $40^{\circ} \mathrm{F}$., thus allowing considerable incubation time for bacterial growth.

v. SPECIAL REPORTS

NONE

VI. INTERNATIONAL

A. Australia

Report of Isolations of Salmone11ae from Human and Nonhuman Sources in Australia, Second and Third Quarters 1966
Reported by Helen McDonald, B.Sc., Salmonella Reference Laboratory, Institute of Medical and Veterinary Science, Adelaide, Australia.

During the second quarter of 1966,480 isolations of salmonellae were typed in the Salmonella Reference Laboratory. Of these 95 were from human sources, 238 from animals, and 147 from miscellaneous sources, including meat. In the third quarter, 377 isolations were typed, including 63 from human sources, 143 from animals, and 101 from miscellaneous sources. The most frequently isolated serotypes from humans during the two quarters are listed below.

Second Quarter

Rank	Serotype	Number of Isolations	Percent
1	S. typhi-murium	44	46.3
2	S. chester	7	7.4
3	S. anatum	5	5.3
4	S. bovis-morbificans	4	4.2

Third Quarter

Rank	Serotype	Number of Isolations	Percent
1	S. typhi-murium	23	36.5
2	S. chester	5	7.9
	S. oranienburg	5	7.9
4	S. enteritidis	3	4.6
	S. typhi	3	4.6

The most common nonhuman sources were bovine, meat, egg products, porcine, chickens, and soil. Salmonella kinondoni, S. sofia, S. lansing, $\underline{\text { S }}$. kimberley, and $\underline{\text { S }}$. schleissheim were isolated for the first time in Australia.
B. Netherlands

Reports of Isolations of Salmonellae, First and Second Quarters 1966 Reported from the National Salmonella Center, Netherlands.

During the first quarter of 1966, a total of 524 human and 1,215 nonhuman isolations of salmonellae were typed, and during the second quarter 1,215 human and 987 nonhuman isolations were typed by the National Salmonella Center. The five most common serotypes isolated from humans are listed below.

First Quarter

Rank	Serotype	Number of Isolations	Percent
1	S. typhi-murium	275	52.5
2	S. panama	104	19.8
3	S. stanley	36	6.9
4	S. newport	15	2.9
5	S. anatum	13	2.5
	S. typhi	13	2.5

Second Quarter

Rank	Serotype	Number of Isolations	Percent
1	S. \cdot typhi-murium	530	43.6
2	S. Stanley	318	26.2
3	S. panama	113	9.3
4	$\underline{S} \cdot \underline{\text { newport }}$	31	2.6
5	$\underline{S} \cdot \underline{\text { bovis-morbificans }}$	28	2.3

The most common sources for nonhuman isolations were meat and meat products, cattle, pigs, fowl, and sewage and surface water.

VII. FOOD AND FEED SURVEILLANCE

A. Progress Report on Food Surveillance

Forty-three beef samples were received from three states and examined for salmonellae, shigellae, E. coli, and coagulase-positive staphylococci. The results in Table VII show 12 samples positive for coagulase-positive staphylococci, 15 samples positive for E. coli, and 1 sample positive for salmonellae. The salmonella isolate was serotyped as S. blockley.

Recently salmonellae have been isolated from carmine, a red dye extracted from the cochineal insect. This dye is commonly used as a food coloring, resulting in a potential hazard when foods are colored with this product. Carmine is not usually listed by name as a food ingredient but is designated only as food coloring. One hundred seventy-six food samples containing red coloring were received by the Veterinary Public Health Laboratory and examined for salmonellae, shigellae, coagulasepositive staphylococci, and E. coli. The samples were soft drink mix, 38; gelatin dessert, 24 ; liquid food coloring, 16 ; food decorations, 26 ; candy, 31 ; liquid drink, 5; cake icing, 3; meat preservatives, 3; lipstick, 2; and miscellaneous food products, 18.

Coagulase-positive staphylococci were isolated from 1 sample, liquid drink. The drink ingredients were carbonated water, sugar, artificial flavor and color, and citric acid. Salmonella cubana was isolated from 1 sample of meat preservative from Illinois. The product contained salt, dextrose, bicarbonate of soda, sodium benzoate,
ascorbic acid, sodium citrate, monosodium glutamate, paprika, and carmine. This meat preservative product is labeled for use "as an oxidant to preserve meat and meat color in which it is used." Other samples were negative for these four organisms.
B. Summary of Food and Drug Cultures by the U.S. Food and Drug Administration

A summary of data on foods and drugs examined for salmonellae in the U.S. Food and Drug Administration Field Districts for the fiscal years 1965 and 1966 has been received. These reports indicate a substantial increase in the number of samples examined for salmonellae in fiscal year 1966 compared with 1965. However, the number of samples containing salmonellae did not increase proportionally. Most of the increase was attributed to the greater attention to nonfat dry milk and egg products. The findings in the 19 different categories of food are given in the following table.

Foods and Drugs Analyzed for Salmonella by Field Districts of the U.S. Food and Drug Administration

Type of Product	1965		1966	
	Samples Examined		Samples Examined	
	Number	Positive	Number	Positive
Eggs and egg-containing foods	382	127	595	141
Yeast and yeast products	107	27	57	7
Bakery products (without egg)	29	0	19	0
Fish products	25	0	62	2
Fruit	2	0	2	0
Nuts	25	0	23	0
Ice Balls, Pink Elephants	0	0	13	0
Teething rings, pacifiers	0	0	14	0
Drugs	2	0	74	16
Salads	3	0	7	0
Dairy products	1	0	664	40
Grains	19	0	3	0
Drinks	2	0	10	0
Vegetables	10	0	9	0
Meats	7	0	14	0
Animal feed	2	0	8	4
Salad dressing	2	0	9	0
Candy syrups	4	0	1	0
Miscellaneous	3	0	4	0
Totals	625	154	1588	210

Seventy-five kinds of food were represented, of which 8 were found to contain salmonellae. The positive foods included eggs and egg-containing foods, nonfat dry milk, dried yeast, thyroid and other drugs of animal origin, meat and bone meal, and smoked fish and fish meal.
C. Supplement - List of Organizations Concerned with Salmonellae in Foods or Feeds - International

A conference on the Destruction of Salmonellae was held in Albany, California, March 9 through 11, 1966, by the U.S. Department of Agriculture in cooperation with the Western State Experiment Stations. It was organized by Dr. Hans Lineweaver (U.S. Department of Agriculture) and Dr. A. W. Brant (University of California, Davis) under the guidance of Dr. M. J. Copley, Director of the Department's Western Regional Research Laboratory. One of the sessions dealt with national and international activities on salmonellae in food. For this session, Dr. John Ayres prepared a list of national and international laboratories concerned with salmonellosis.

We have added to the international portion of this list and included this supplement for use as reference by the recipients of the Salmonella Surveillance Report. It is recognized that this list is by no means complete. Therefore, if you are aware of omissions, please send the names and location of the organization and the name of the principal investigator to the attention of Mildred M. Galton, Veterinary Public Health Laboratory, Communicable Disease Center, Atlanta, Georgia 30333.

When additional data is received, a supplement to the list will be distributed.

Organizations Concerned with Salmonellae in Foods

International

Country	Investigators	Organization
Africa (South)	Dr. Ben Jansen	Director of Veterinary Services Onderstepoort
Argentina	Dr. Boris Szyfres	Director, Centro Panamericano de Zoonosis Buenos Aires
Australia	Dr. Nancy Atkinson	University of Adelaide Department of Bacteriology Adelaide
	Mrs. Helen K. McDonald	Salmone1la Reference Laboratory Institute of Medical and Veterinary Science
	Dr. N. Kovacs	Adelaide
	Dr. Doz DDr. F. Petuely	Public Health Laboratories Royal Perth Hospital Perth, W. Australia
Austria	Bundesanstalt fur Lebenmittel Untersuchung, Wien 9 Kinderspitalgasse 15	
Belgium	Dr. E. L. van Oye	Institut d'Hygiene et d'Epidemiologie Brussels
Brazil	Prof. Dacio de Almeida	School of Hygiene and Public Health
Christovao	University of Sao Paulo Sao Paulo	

Country Investigators Organization

Bulgaria	Frau Ing. Nadescha Dimitrowa	Institut fur Fleischwirtschaft Sofia
Canada	Dr. E. T. Bynoe	Chief, Bacteriological Laboratories Laboratory of Hygiene Department of National Health and Welfare Ottawa, Ontario
	Dr. F. S. Thatcher	Head, Microbiology Section Food and Drug Directorate Department of National Health and Welfare Ottawa, Ontario
Ceylon	Dr. C. L. Wisidagama	Municipal Veterinary Surgeon Colombo Municipal Council Colombo
Chile	Dr. Enrique Mora	Professor of Public Health School of Veterinary Medicine University of Chile Santiago
Costa Rica	Dr. Fred Payne Dr. Henri de la Cruz	Program Coordinator Food Microbiologist International Center for Medical Research and Training San Jose
Czechoslovakia	Ing. Milan Pazlor	```Central Research Institute of Food Industry Prague```
	Dr. Dobromila Matejovska	```National Reference Laboratory for Salmonella Typing Prague```
Denmark	Dr. V. Biering-Sorenson	```Chief Veterinarian Royal Veterinary and Agricultural College Rengsted```
		State Serum Institute Copenhagen
		State Veterinary Service Laboratories Copenhagen
		Danish Meat Products Laboratories Copenhagen
East Germany	Dr. Stellmacher	Staat1. Vet. Med. Prufungsinstitut Berlin 4
	Dr. Med. Gunter Fuchs	Hygiene Institut der TH und Medizineschen Akademie, Dresden

Country Investigators Organization

East Germany (Continued)	Dr. J. Kiesewalter	Zentrallaboratorium, fur bakterielle Darminfektionen, beim Institut fur Serum-und Impfstoffprufung Institusteil Potsdam Potsdam
Egypt	Dr. Ahmed El Take Shehata	Food Technology Department University of Alexandria Alexandria
	Dr. Hassan Kamel El-Mansoury	High Institut of Public Health Alexandria
England	Dr. Betty C. Hobbs Dr. Joan Taylor	Food Hygiene Laboratory Salmonella Reference Laboratory Central Public Health Laboratory Collindale Avenue London, N.W. 9
	Dr. W. Sojka	```Salmonella and Enteric Laboratory Central Veterinary Laboratory Weybridge, New Haw```
France	Dr. L. Le Minor	Centres des Salmonellae de 1'Institut Pasteur de Paris
	Dr. R. Buttiaux	```Laboratory of Experimental Hygiene Pasteur Institute Lille```
	Dr. Moquot	Director, Institut Nationale de 1a Recherche Agronomique Jouy-en-Joses, Seine-at-Oise
Germany (West)	Dr. M. Bischof, Director Dr. R. Rohde	```Hygienisches Institut Salmonella-Zantrale 2 Hamburg 36, Groch-Fock Wall 15/17```
	Prof. N. G. Seide1	Bezerks-Hygiene Institut Berlin c. 2
	Dr. H.P.R. Seeliger	Hygiene-Institut Rheinische Friedrich-Wilhelms Institute Bonn
	Dr. D. Schimmel	```Duetsche Akademie der Landwertschaft- wissenschaften Berlin```
	Dr. Siegfried Hoffman	Federal Health Office Berlin

Country Investigator Organization

Guatemala	Dr. 01sina Narcyz	```Food Microbiologist Institute of Nutrition for Central America and Panama Guatemala City```
Hungary	Dr. G. Nagy	Director Central Food Research Institute Budapest
	Dr. J. Takacs	Head, Central Laboratory of Veterinary Meat Control Service Budapest
	Dr. Nikodemus	Institute of Nutrition Budapest
India	Dr. D. K. Murty	Deputy Director, Microbiology National Institute of Communicable Disease De1hi 6
	Dr. B. R. Baliga	Director of Meat and Fish Technology Central Food Technological Research Institute Mysore
Israe 1	W. Silberstein	```Government Central Labs. National Salmone11a Centre of Israel Ministry of Health Jerusalem```
Italy	Prof. Dr. Gianfranco Tiecco	Institute Superiore di Sonita Laboratori di Veterinaria Rome
	Dr. C. Cominazzini	Provincial Institute of Hygiene via Mossotti 4, Novara
Japan	Dr. Hideo Fukumi Dr. Ruchi Sakazaki	Department of Bacteriology National Institute of Health Tokyo
	Dr. Hiroo Iida	Hokkaido Institute of Public Health Epidemiology Section South 2, West 15, Sapporo
Mexico	Dr. Jorge 01arte	Hospital Infantil de Mexico Mexico, D. F.
	Dr. Gerardo Varela	```Instituto de Salubridad y Enfermedades Tropicales Mexico, D. F.```

Country	Investigator	Organization
Mexico (Continued)	Dr. Adolfo PerezMiravete	```Dept. of Microbiology, Escuela Nacionel de Clencias Biotogicas Institute Politecnico Nacional Mexico, D. F.```
Netherlands	Dr. E. H. Kampelmacher	Laboratory for Zoonoses, Rijks Institut Voor de Volksgezondheid Sterrenbos 1, Utrecht
	Dr. D.A.A. Mossel	Laboratory of Bacteriology Central Institute for Nutrition and Food Research T.N.O. 48 Utrechseweg, Zeist
New Zealand	Dr. R. A. Robinson	Kuakura Research Center Private Bag, Hamilton
	Dr. P. M. Nottingham	Meat Ind. Res. Institute of New Zealand Wellingt on
Northern Ireland	Dr. D. J. Stewart	Agricultural Bacteriology Department Queens University Belfast
Norway	Dr. Stelnar Hauge	Institute of Food Hygiene The Veterinary College of Norway Os1o 4
Peru	Dr. Manue1 Moro Sommo	Co-Director, Instituto Veterinario de Investigaciones Tropicales Y de Altura Universidad Nacional Mayor de San Marcos Apartado 2036, Lima
	Dr. Fernando Quevedo	Centro Latin Americano de Bacteriologia Alimentaria Universidad Nacional Mayor de San Marcos Apartado 5653, Lima
Poland	Dr. Burzynska Dr. Lachowicz Dr. Krauss	State Institute of Hygiene Warsaw
	Dr. Zenon Buczowski	Institute of Marine Medicine Gdanks
Scotland	Dr. J. R. Hawthorne	University of Glasgow Glasgow
	Dr. J. M. Shewan	Torry Research Station Aberdeen
Spain	Dr. Rodrigo Pozo-Lora J. Millan	Dept. de Zootecnia Facultad de Vet. Cordoba

Country	Investigator	Organization
Sweden	Dr. Hans-Jorgen Hansen	Statens Veterinarmedicinska Anstait Stockholm 50
	Dr. H. Lundbeck	National Bacteriology Laboratory Box 764 Stockholm
Switzerland	Dr. Hans Fey	```Veterinar-Bakteriologisches Institute der Universitat Bern```
	Prof. Dr. Knapp	Institut fur Hygiene and Bakteriologie Bern
Uruguay	Dr. Cira A. Peluffo	Instituto de Higiene Montevideo
U.S.S.R.	Dr. N. P. Nedfedjeva	Laboratory of Microbiology Institute of Nutrition Academy of Medical Sciences Moscow
	Dr. Kielso	National Salmone1la Center Institute of Epidemiology Moscow
World Health Organization	Dr. Martin Kaplan Dr. M. Abdussalam	Division of Communicable Diseases 1211 Geneve-Suisse Geneva
	Dr. P. Yekutiel	Global Epidemiological Surveillance Division of Communicable Diseases 1211 Geneve-Suisse Geneve
Yugoslavia	Dr. Vanja Est.	Central Institute of Hygiene Ljubijana

Figure 1.
REPORTED HUMAN ISOLATIONS OF SALMONELLA
IN THE UNITED STATES

COMmon SALMONELLA SEROTYPES ISOLATED FROM TABMENS IN THE UNITED STATES DURING OCTOBER, 1966

SEROTYPE	CEOGRAPHIC DIVISION AND REPORTING CENT																																				SEROTYPE
	new encland							middle atlantic						east north central						west north central								south atlantic									
				muss	RI																									DC VA	${ }_{\text {a }}^{\text {uv }}$	Nc	c sc	GA F	A Tot		
anatum bareilly berta blockley braenderup				10 5																											1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$		1	4	3 1 2 8 1	anatum bareilly berta blockley braenderup
bredeney chester cholerae-suis v kun cubana derby				1 9	${ }^{1}$						$\begin{array}{\|l\|l\|} \hline 1 & 1 \\ 1 & 1 \\ \cline { 2 - 3 } & 1 \\ \cline { 2 - 3 } & 2 \\ & 1 \\ & \\ & \\ \hline \end{array}$			2			$\begin{array}{\|l\|} 1 \\ 1 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 2 \\ \hline 1 \\ \hline 3 \\ \hline 4 \\ \hline \end{array}$				$\left\|\begin{array}{l} 1 \\ 1 \end{array}\right\|$						$\left\|\begin{array}{l} 1 \\ 1 \end{array}\right\|$				1		2		1 5	bredeney chester cholerae-suic cubana derby
```enteritidis give heidelberg indiana infantis```				20   16		6   3	$\begin{array}{\|c\|} \hline 26 \\ \hline 5 \\ \hline 19 \\ \hline \end{array}$	$\begin{aligned} & 5 \\ & 4 \\ & 7 \end{aligned}$	$3$	$\begin{aligned} & 5 \\ & 9 \\ & 4 \end{aligned}$	${ }_{4}^{4}{ }^{1}$		$\begin{array}{\|l\|} \hline 28 \\ \hline 23 \\ \hline 13 \\ \hline \end{array}$	1 3 1	2 5 1	7 8 1 7	$\begin{array}{r} 10 \\ 12 \\ 6 \end{array}$			$\begin{aligned} & 7 \\ & 1 \end{aligned}$	1   1	$\begin{aligned} & 1 \\ & 2 \\ & 1 \end{aligned}$				1 1 7	$\begin{array}{\|r\|} \hline 3 \\ \hline 10 \\ \hline 10 \\ \hline \end{array}$	1	$\begin{aligned} & 4 \\ & 6 \\ & 1 \\ & 1 \end{aligned}$	2 6   2 3    6	6 3 6	$3$		$\begin{array}{\|l} 4 \\ 5 \\ 4 \end{array}$	3	$\begin{array}{\|c\|} \hline 20 \\ \hline 26 \\ \hline \frac{1}{16} \\ \hline 1 \\ \hline \end{array}$	enteritidis   give   heidelberg   indiana   infantis
java   Javiana kentucky litchfield livingstone				3			3	3	1	1	1		$\begin{array}{\|r\|} \hline 5 \\ \hline 1 \\ \hline 1 \\ \hline 1 \\ \hline \end{array}$			3			$\begin{array}{\|l\|} \hline 3 \\ \hline 4 \\ \hline \end{array}$	1							1		1			1		2	$\begin{array}{r} 14 \\ 1 \\ 3 \end{array}$	$\begin{array}{\|c} \hline 2 \\ \hline 16 \\ \hline 1 \\ \hline 3 \\ \hline \end{array}$	java   javiana   kentucky   litchfield   livingstone
manhattan   meleagridis   miami   mississippi   montevideo				1			1		2	1   4	1			1			2		$\begin{array}{\|l\|} \hline 2 \\ \hline \\ 1 \\ \hline \end{array}$			1					1		1					1 1 1	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \\ \hline 1 \\ \hline 4 \\ \hline 1 \\ \hline 4 \\ \hline \end{array}$	manhattan   meleagridis   miami   mississippi   montevideo
muenchen newingt on newport oranienburg panama				2 2 2 1 1		2	2   2   $\frac{5}{1}$	1	$2$	$2$	5		$\begin{array}{\|r\|} \hline 4 \\ \hline 11 \\ \hline 1 \\ \hline 31 \\ \hline \end{array}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1	1 6 2 1	1		$\begin{array}{\|r\|} \hline 2 \\ \hline 10 \\ \hline \frac{3}{2} \\ \hline \end{array}$	$2$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1			3	$\begin{array}{\|l\|} \hline 3 \\ \hline 5 \\ \hline 1 \\ \hline 5 \\ \hline \end{array}$	1	1		11	1		$\begin{aligned} & 8 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	[ ${ }^{23}$	$\begin{array}{\|c\|} \hline 7 \\ \hline 36 \\ \hline 7 \\ \hline 3 \\ \hline \end{array}$	muenchen   newingt on   newport   oranienburg   panama
paratyphi B poona   saint-paul san-diego schwarzengrund	1	1			1	2	$\begin{array}{\|l\|} \hline 2 \\ \hline 4 \\ \hline \end{array}$	2		5	3		10	1		10			11	$\begin{aligned} & 1 \\ & 1 \end{aligned}$							$12$		$1$		2			5	8	17   18	$\begin{aligned} & \text { paratyphi B } \\ & \text { poona } \\ & \text { saint paul } \\ & \text { sant-diego } \\ & \text { schwarzengrund } \end{aligned}$
senftenberg   tennessee   thompson   typhi   typhi-murium	1		3	1 1 1 1 38	6	7	1   1   1   2   58   2	$\begin{array}{r} 3 \\ 3 \\ 39 \end{array}$	$\begin{aligned} & 1 \\ & 7 \end{aligned}$	$\begin{array}{r} 1 \\ 2 \\ 22 \end{array}$	$\begin{array}{\|l\|l\|} \hline 2 \\ 1 & 1 \\ 9 & 1 \end{array}$	${ }_{1}^{1}$	1   7   91   91	2 5 24	8	${ }_{63}^{4}$	1 1 5 17		2 $\frac{1}{3}$   10    10    10    122    12	$\begin{aligned} & 2 \\ & 2 \\ & 6 \end{aligned}$	1	2 8				15	$\begin{array}{\|r\|} \hline \frac{2}{5} \\ \hline 30 \\ \hline \end{array}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 1 \\ & 3 \\ & 9 \\ & \hline \end{aligned}$	${ }_{3}{ }^{1} 1$	1    4    0    0    3	3 1 3	3	$\begin{gathered} 4 \\ 1 \\ 16 \end{gathered}$	${ }_{12}^{1}$	$\begin{array}{\|c\|} \hline 1 \\ \hline \frac{1}{14} \\ \hline 16 \\ \hline 58 \\ \hline \end{array}$	senftenberg   tennessee   thompson   typhi   typhi-murium
typhi-murium v cop urbana veltevreden worthington untypable, group B	4	4		5	3	1				$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1					1	2		2   3   1						2		2			4			1			5	typhi-murium v cop urbana   weltevreden worthington untypable, group B
untypable, group C1   untypable, group C2   untypable, group D   untypable, group E   untypable or unknown		$\begin{aligned} & 2 \\ & 1 \end{aligned}$		1		1	2   2   1												2				2				2			$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & \hline \end{aligned}$			2			1 4 2 2	untypable, group C1 untypable, group C2 untypable, group D untypable, group E untypable or unknown
Total Comon	10	1	3	128	11	24	183	70	20	63			271	43	20	126	64	34	287	27	3	21	3	0	2	35	91	5	37	26.38	8	24	6	58	100	293	Total Common
Total Uncomon	0	0	0	1	0	6	7	6	0	3	1	0	10	2	0	2	6	0	10	0	0	0	0	0	0	0	0	0	4	$0{ }^{0} 3$	3.0	3	0	1	6.	17	Total Uncomon
Grand Total	10	7	3	129	11	30	190	76	20	66	4	47	281	45	20	128	70	34	297	27	3	21	3	0	2	35	91	5	41		$1{ }^{1} 9$	27	${ }^{6}$	59	106	310	Grand Total
New Y		A-A1				h Isr	1	spi	1,	ity)				The B alth	ough	$\begin{aligned} & \text { Is ra } \\ & \text { man } \\ & \text { repo } \end{aligned}$	yy	$\begin{aligned} & \text { aimo } \\ & 1 \text { teur } \\ & \text { by } \end{aligned}$	$\begin{aligned} & \text { onella } \\ & \text { res } \mathrm{fr} \\ & \text { N. } \mathrm{Y} .- \end{aligned}$	$\begin{aligned} & \text { Typin } \\ & \text { om oth } \\ & \text { B.I. } \end{aligned}$	$\begin{aligned} & \text { g Cent } \\ & \text { er st } \\ & \text { Beth } \end{aligned}$						$\begin{gathered} a r \\ \text { ane } \\ \text { fota } \end{gathered}$	$\begin{aligned} & \text { tere } \\ & \text { to } \\ & \text { of } \end{aligned}$	$\begin{aligned} & \text { ence } \\ & \text { the } \\ & \text { en } \end{aligned}$	$\begin{aligned} & \text { l labor } \\ & \text { e la respe } \\ & \text { e rese } \end{aligned}$	$\begin{aligned} & \text { poras } \\ & \text { pec } \end{aligned}$		$\begin{aligned} & \text { stat } \\ & \text { fat } \end{aligned}$	$\begin{aligned} & \text { ites } \\ & \text { Oct } \end{aligned}$			



SEROTYPE	AEPOETING CENTEA																													
	ALA	alas	ARI	anx	Caly	cow	cons	ort	dc	ru	a	mi	rem	IL	Te	tom	un	- ${ }^{\text {a }}$	4	$\cdots$	0 muss	nck	xım	nass	no	nowr	nesa	nev		m
aberdeen   abony   abortus-bovis   agama   alachue					1   1					1				2			1		1											
$\begin{aligned} & \text { albany } \\ & \text { amager } \\ & \text { arechavaleta } \\ & \text { arkansas } \\ & \text { atlanta } \end{aligned}$					3					2	1   14								$\begin{aligned} & 1 \\ & 1 \end{aligned}$		2	1	1			1				
austin   ball   berlin   binza   boniare					$\stackrel{2}{4}$	1				2								1	2		1		2		1					
$\begin{aligned} & \text { bonariensis } \\ & \text { bovis-merbificans } \\ & \text { bradford } \\ & \text { brandendurg } \\ & \text { callfornis } \end{aligned}$		1			1   2	2	1			$1$ $1$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$			1 1 1	1		1		1			1								${ }^{1}$
```carrau cerro challey choleree-suls coleypark```					5	1				2		3		1			1		3		1									
$\begin{aligned} & \text { colorado } \\ & \text { concord } \\ & \text { corvallis } \\ & \text { dayteona } \\ & \text { drypool } \end{aligned}$										1	1			1					1											
đublin duesseldorf duisburg eimsbuettel fayed					3			1		2									2 1			2								1
gallinarus gaminara garoll glostrup grumpensis					.					1				1					s											
habana haifa hartford Ibadon inverness					2		1		1	-	$\begin{aligned} & 1 \\ & 1 \end{aligned}$			1 3 1					1		1	1	1							1
Irums kaspstad kot tbus lanka loma-1inda					1	$\stackrel{2}{2}$																			1					
iomita lucina asdelis. asachester senston						1				1					1		2													
					2					2						1														
$\begin{aligned} & \text { suenster } \\ & \text { nagoya } \\ & \text { nevobrunswick } \\ & \text { nev-hav } \\ & \text { neviands } \end{aligned}$	1	2	1		2	1	s				2			2	1				1		25	2	2							1
```nilenstedten norvich ohto orion oritamerin```				1	,	1				2									4			2			1					
```65 eslo papuana paratyphi-A paratyphi-8 v. odense```					4							15					1		3		1	${ }^{2}$								
paratyphi-C ponona potsdam pullorum reading			1		2 1 16	1 2	1	3		1				17				4	1	2		,	2		1	1				2
reso rubislav saphra sarajane sendai					2					s									${ }^{11}$		1									1
$\begin{aligned} & \hline \text { sereaban } \\ & \text { siegburg } \\ & \text { simabury } \\ & \text { soahanina } \\ & \text { stanley } \\ & \hline \end{aligned}$					2				2	2				1 2					1		1	1								${ }^{1} 1$
stockhole sund svall tallahassee texas thomasville										2				1 1	1															
virchow vassenaar velasco vesterstede vesthampton										4	1								1			3								
untypable group A untypable group G untypable group H untypable group 0					3					1									1											1 2 2
Total	1	3	2	1	12	13	8	4	3	51	24	18	-	46	4	1	6	5	37	2	912	20	9	0	4	2	0	10	${ }^{\circ}$	

\approx				－		\sim			\sim	－－	\sim	－			－			\sim	－			3
\sim												－		－			\sim					$\stackrel{3}{3}$
－		－	－					－－	－				－	－－	－	－－	\sim				－	3
\sim			－	－		\sim							－		\cdots							$\overline{7}$
－																						6
F			－		\sim			いい					－		\sim		－					융
\sim					－	－		－				－	－									$\stackrel{8}{5}$
ธ		－				$\bar{\square}$		－	～			－										8
\bullet									－\sim			－							－＊			7
－																						\pm
－																						Σ
－																						\％
$=$				\sim	－	－		\sim		～					－		\sim					砍
$\%$			－	－～	\cdots	～	－	\sim	－	～			～	－	～		－－					园
－								－														5
－																						3
\sim					－				\sim					－			－	－			－	5
－																						5
～						＊			＊						N			\sim				E
－																						Σ
－						\sim			－－	－			－									5
－																						5
z	－		\cdots	1	－ 0.0			10		－	～		\ldots		H－－		\cdots	－1－	\cdots	－－－	\square^{-}	\＄
\％																	$1 \sim 40050$	－$-1 \sim 10$		$12-170$	－0， 0	電产
					$\begin{aligned} & R E R 8 R \\ & \text { E } 58 \% \end{aligned}$		 なさなるよ						$\begin{aligned} & \text { ERREE } \\ & \text { Fzg\& } \end{aligned}$					$\begin{aligned} & \text { RRERE } \\ & \text { F } \% \% \% \end{aligned}$	ち8をそう なますなる			
									¢5 ¢ ${ }^{\text {d }}$		¢8บบ3	9¢3¢\％	E\＃§8，	s．Exa			$\text { ye } \frac{1}{5} \leq \frac{\pi}{n}$		$E \frac{E}{\frac{1}{2}} \underline{E}^{z}$		55Es	䬿第会
			$\therefore 020$				$-1 x_{0}=0$	$0-1==0$		$0.0-1$			$\text { Fox } 0$	$=-0.0$								
星					$\frac{8}{8} \frac{5}{8}$	$\frac{2 \pi}{6} \frac{5}{6} \frac{0}{2}$		$\frac{2}{2} \frac{2}{3} \frac{2}{6} \frac{2}{2} \frac{2}{2}$		$\frac{8}{4} \frac{5}{8} \frac{2}{3} \frac{2}{3} \frac{2}{3}$												n － 0 － －

TABLE III

Age and Sex Distribution of Individuals Reported as Harboring Salmonellae During October 1966

Age (Years)	Male	Female	Unknown	Total	\%	Cumulative \%
Under 1	98	123	7	228	19.8	19.8
1-4	154	149	2	305	26.4	46.2
5-9	66	71	1	138	12.0	58.2
10-19	50	55		105	9.1	67.3
20-29	36	64	1	101	8.8	76.1
30-39	29	22	1	52	4.5	80.6
40-49	16	52		68	5.9	86.5
50-59	31	29		60	5.2	91.7
60-69	19	26		45	3.9	95.6
70-79	16	21		37	3.2	98.8
$80+$	4	11		15	1.3	100.1
Child (Unspec.)	6	15	6	27		
Adult (Unspec.)	6	23		29		
Unknown	253	219	39	511		
Total	784	880	57	1721		
\% of Total	47.1	52.9				

	－														䇣
	\＃		6	「ご	$n \times$	－6－	－	$=$	\cdots	\vec{y}	いた		－	－－－	chicken
$\stackrel{\Delta}{3}$	N	v		aw－	¢ $\overline{8}=5$				\cdots	－\％	－	．	$--=$	＊	turkey
$\frac{n}{k}$	－		－												duck
¢	－			－											chicken droppings
\sim	－									－					mynah bird
\％	－												－		pheasant
\％	\sim							－						－	quail
	\cdots						\cdots								avian droppings
	\cdots			－						\sim－					avian
\％	－			－											equine
I	\％		－～	こ＿－			－				－				bovine
\％	\cdots									－					ovine
$\%$	\pm		$n+$	$x=$	N		\square	－		$\underline{=}$	$=$	Σ			porcine
	－		－	N	－										canine
	\sim			－			－								feline
	－				－										rabbit
	－			－											sonkey
	N			－								－			mink
	－			－											elephant
¢	\cdots					－									animal，unknown
กิ	－			N						－－					ers
	－				－										egs yolk
	＝	ω						\sim		\sim					poudered eg8
$\frac{0}{2} \frac{n}{3}$	E				N			N							frozen egs
	\cdots							\sim						＊	poudered egs yolk
\％	\cdots			\sim							\cdots		－		egs meat
	－			－											chocolate drink mix
	E			－			－					a			dry milk
	－												－		broth
	－							\cdots	－				N		poultry feed
	$\stackrel{\text { L }}{ }$	－	\sim	$\sim \sim$	$\cdots+$		－－n	N－T	－N－	－	－er	N	－	－	1ivestock feed
	\％		\cdots		－		－	\sim			\sim		－－	－	$\begin{array}{\|l} \hline \text { bone meal/ } \\ \text { meat scraps } \\ \hline \end{array}$
家	\because	－	\sim	－－	N		\sim	\pm	N	\cdots－	N	－w	－	－2	$\begin{aligned} & \text { animal feed, } \\ & \text { unknown } \end{aligned}$
	－		－												fish meal
	－								－						corn feed
$\frac{0}{2}$	－								－						animal protein feed
	\cdots		－		－	－	－			－					turtle
자즤	\sim		－				－								fish
\％	\sim		－－							－					turtle environment
	\sim						－			－－	\sim		－	－	sevage
	\cdots		－－			－	－－			－			－		turtle vater
	－						－								alligator vater
	－									$-$					sawdust
	－												－		sever suab
52	\sim						－－								milk drying plant
边	－											－			meat binder
E	\square				－	N	\sim		\checkmark	－－	－	－		\checkmark	thyroid pouder／tablet
	$\stackrel{ }{-}$											－			carmine dye
	－											\cdots			pepsin
	－				－										dust
	$\bar{\square}$	－		$N \sim$											unknown
	\because	－	－ 5000		$\approx F \approx=2$					$\cos =1$		$\log =10$		$\operatorname{lin}_{N} \approx{ }_{N}$	$\stackrel{-1}{\text {－}}$
	8		$\sim 20=5$		$x x^{2}=2$		$=59620$	$\because \because \because \sim N$	－जロローシ	$\therefore \approx=10$	E	$5 \cdot 0$	$\because=2=\square$	$60=2$	
	$\stackrel{\text {－}}{\text {－}}$														\％

REPORTED NONMOMN ISOLATES BY SEROTVPE AND STATE, *OCTOBER, 1966

TABLE VI
OTHER SEROTYPES REPORTING DURING 1966 FROM NONHUMAN SOURCES

SEROTYPE	MONTH(S)	REPORTING CENTER(S)	NUMBER OF ISOLATIONS
abortus-bovis adelaide alagbon albany amsterdam	Mar Mar Mar Aug Sep Jan	La La NJ Miss (1) Md (1) Ohio	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 2 \\ & 1 \end{aligned}$
babelsbury berta birmingham bovis-morbificans bradford	Jan Feb May Jun Jan Aug Jan	Ind Ga (2) Cal(1) La Ca1(1) DC(2) NJ	1 3 1 3 1
```cambridge caracas carrau cholerae-suis colorado```	Apr   Mar   Apr   Feb   Aug   Mar	La   La   Mass   Cal (1)   Miss (2)   NJ	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 3 \\ & 1 \end{aligned}$
corvallis dublin   emek   eppendorf   fayed	```Apr-Jun Jan-Feb-Mar-Apr- May-Jun-Jul Jan-Mar-Apr-Aug Jul Jan Apr Apr```	La   Cal(26)   Utah(6)   Tex   NJ   La (1)   NC (1)	$\begin{array}{r} 2 \\ \\ 32 \\ 1 \\ 1 \\ 2 \end{array}$
gaminara   grumpensis habana hamilton hartford	$\begin{aligned} & \text { Jul } \\ & \text { Aug } \\ & \text { Mar-Jul-Aug } \\ & \text { Apr } \\ & \text { Jan } \\ & \text { Mar } \end{aligned}$	$\begin{aligned} & \mathrm{La}(1) \\ & \mathrm{Tex}(1) \\ & \mathrm{La} \\ & \mathrm{Md} \\ & \mathrm{La} \\ & \mathrm{Fla} \end{aligned}$	$\begin{aligned} & 2 \\ & 5 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
illinois   javiana   johannesburg   kaapstad   kottbus	$\begin{aligned} & \text { Mar-Sep } \\ & \text { Jun-Sep } \\ & \text { Jul } \\ & \text { Jul } \\ & \text { Sep } \\ & \text { Mar } \\ & \text { Sep } \\ & \text { Sep } \\ & \text { Mar } \\ & \text { Feb } \end{aligned}$	$\begin{aligned} & \mathrm{Minn}(2) \\ & \mathrm{La}(2) \\ & \mathrm{Cal}(2) \\ & \mathrm{Cal}(1) \\ & \mathrm{La}(1) \\ & \mathrm{Mich}(1) \\ & \mathrm{Ark}(1) \\ & \mathrm{NJ}(1) \\ & \mathrm{La} \\ & \mathrm{Ga} \end{aligned}$	6   2 $\begin{aligned} & 3 \\ & 1 \\ & 1 \end{aligned}$

TABLE VI (Continued)
OTHER SEROTYPES REPORTING DURING 1966
FROM NONHUMAN SOURCES

SEROTYPE	MONTH(S)	REPORTING CENTER(S)	NUMBER OF ISOLATIONS
lille   litchfield   madelia   meleagridis   menston	Mar   Apr   May   May   May   Jun-Jul   Jul   Jul   Jul   Aug   Jan-Feb-Apr   Feb-May-Ju1   Mar-Aug   Mar-May   May   Sep	NJ   Cal(1)   Conn(4)   $\mathrm{Ga}(1)$   Kan(2)   Fla(9)   Ohio(1)   Wash(1)   SC(1)   Ca1(1)   Cal(4)   Wisc(3)   Ind (2)   $\mathrm{La}(2)$   Minn(1)   Kan	1   19   2   12   1
miami   mikawashima   minneapolis   mission   new-haw	Feb   Feb   Jul   Jul   Jul   May   Mar   May   Mar	Ca1(1)   Tex(1)   Fla(1)   Wash(1)   Ind   Cal   Ohio(1)   $\mathrm{La}(1)$   NJ	$\begin{aligned} & 4 \\ & 2 \\ & 1 \\ & 2 \\ & 1 \end{aligned}$
norwich   ohio   os1o   pharr   pomona	Ju 1   Jul   Aug   Feb   Feb   Jun   Jun   Jan-Mar-May   Jan   Mar	Conn(1)   Mich(1)   Okla(2)   Iowa(7)   Minn(1)   NJ(1)   NYA (1)   Cal   Mich   NJ	4   10   5   1 1
portland rubislaw   seremban stockholm taksony	Jul   Jul   Jul   Aug   Aug   May   Feb-Aug   Apr   Jun	Wash   Conn(1)   La (2)   Ind (1)   Kan   Ohio   Cal(2)   Md (1)   $\mathrm{Ga}(1)$	1   4   1   4
teddington   tournai   tuebinger   typhi   typhi-suis	Aug   Mar   Jan   Jan   Feb-Mar   Mar	La   NJ   Mich   Mo   Cal(6)   Minn(1)	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 7 \end{aligned}$
vejle waycross westhampton	Apr   Sep   Mar	La Minn Kan	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
Total			176

## TABLE VII

Results of Examinations of Meat Samples for Salmonellae, Coagulase-Positive Staphylococci, E. coli, and Shigellae

State	Total   Number   Samples	Total   Number   Brands	Type Sample	Number   Samples	Number   Brands	Salmonellae	Shigellae	E. coli	Coag. - Pos. Staph
North Carolina	25	14	Beef frankfurters	2	2	0	0	0	0
			Dried beef	2	2	0	0	0	0
			Corned beef	4	4	0	0	1	0
			Breakfast beef sausage	1	1	0	0	1	1
			Chopped beef sirloin	3	3	0	0	2	3
			Chili	2	2	0	0	1	1
			Chopped beef tenderloin	1	1	0	0	0	1
			Beef bologna	2	2	0	0	0	0
			Ground round steak	1	1	1*	0	1	1
			Smoked sliced beef	2	2	0	0	0	0
			Ground beef	3	2	0	0	3	3
			Breaded beef	1	1	0	0	0	0
			Beef bacon	1	1	0	0	0	1
			Total	25		1	0	9	11
Colorado	9	7	Ground beef	6	4	0	0	2	1
			Frankfurters	1	1	0	0	0	0
			Chopped beef sirloin	1	1	0	0	1	0
			Chicken, beef, cereal patties	1	1	0	0	0	0
			Total	9		0	0	3	1
Michigan	9	7	Beef frankfurters	3	3	0	0	1	0
			Beef pie	2	1	0	0	1	0
			Beef patties	2	1	0	0	0	0
			Ground beef	2	2	0	0	1	0
			Total	9		0	0	3	0

